

What Applied Research Has Learned From Industry About Tire Aging

W. Riley Garrott May 1, 2003

Meetings With Industry

From October 2002 through January 2003,
 NHTSA had meetings to discuss tire aging with:

-Continental -ASTM F09.30 Committee

—Ford —SAE Highway Tire Committee

-General Motors -Akron Rubber Development Lab

-Goodyear —Smithers Scientific Services

–Michelin –Standards Testing Laboratory

Also have had numerous informal contacts with industry

In-Use Tire Failures

Failures of Tires In the Field

- Industry has told NHTSA that common tire failure modes seen in the field are:
 - Belt Edge Cracking
 - + May lead to tread separation
 - + Known safety problem!
 - Bead Failure
 - + Results in more rapid air loss
 - + Generally not safety problem!

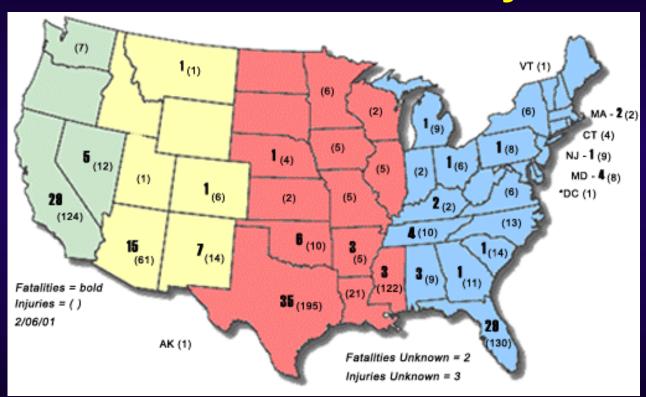
Failures of Tires In The Field

- Infrequently seen tire failure modes:
 - Tread Chunking
 - + Usually due to manufacturing/quality control problems
 - + Not generally a safety problem
 - Sidewall Failure (Blowout)
 - + Occurs after tire sidewall damaged
 - + Known safety problem!

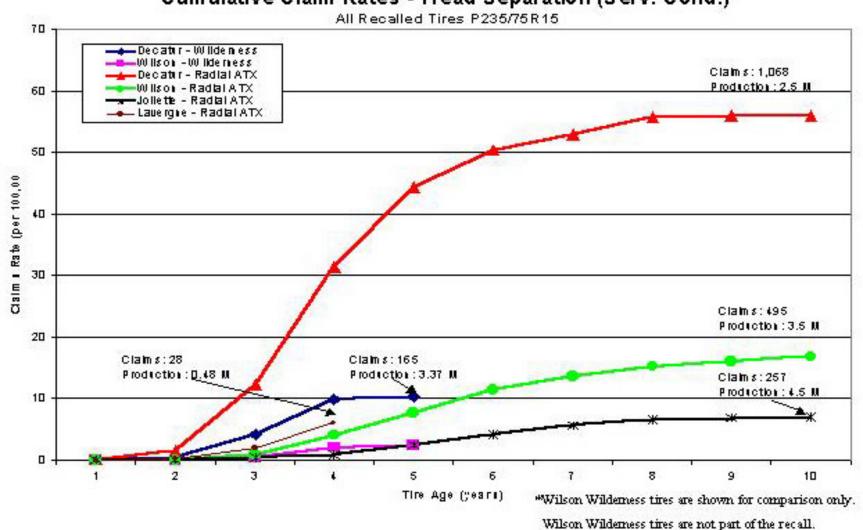
General Agreement: Older tires are more likely to suffer one of these failures than are new tires

→ Tire Aging Matters

Types of Tire Aging


- Industry has told NHTSA that while there are many aging mechanisms acting on a tire, only two really matter:
 - Chemical Aging
 - + Changes in tire rubber due to heat and oxygen interactions
 - + Oxygen permeation into area around end of top belt (Belt #2) is what really matters
 - Mechanical Aging
 - + Changes in rubber due to mechanical stress/strain
 - + Area around end of Belt #2 has highest stress/strain
 - + Mechanical aging effects are greatest in this area

What We've Learned from Firestone Tire Failures


Fatalities and Injuries Resulting from Firestone Tire Failures by State

Most tread separations occurred in warm climate states: CA, AZ, TX, MS, FL

Tread Separation Rate (service condition): Recalled Tires Only*

Cumulative Claim Rates - Tread Separation (Serv. Cond.)

Summary Firestone Data

- High ambient temperatures result in an increase in tire failures (southern states)
- High ambient temperatures accelerate the rate of chemical aging in tires
- Tire failures don't begin to manifest until about 2-3 years of use
- Most importantly: Testing new tires from the factory may not identify defective designs

Possible Tire Aging Tests

Possible Aging Test Protocols

- Five possible aging test protocols were advanced during NHTSA's discussions with industry:
 - Air Permeability Test (ASTM F1112-00)
 - General Motors Accelerated Tire Endurance (ATE) Test
 - Michelin LTDE Test
 - Oven/Mechanical Aging Endurance Test
 - Roadwheel conditioning followed by Peel Force Test

Air Permeability - Test Philosophy

- Chemical aging is due to oxygen diffusing through the tire composite and reacting with the internal components
- If the rate at which air diffuses through the tire is slowed, the rate of chemical aging will be similarly slowed
- Other tests in the proposed FMVSS 139 will hopefully ensure that mechanical aging effects are reasonably handled

Air Permeability - Test Philosophy

According to Tire Manufacturers

- Tires with more expensive, halogenated-butyl inner liners lose air at a rate of 2.0 - 2.5 percent per month
- Tires with cheaper, non-halogenated-butyl inner liners lose air at a rate 4.0 - 5.0 percent per month
- For the same inner liner compound, a thicker inner liner will lower the air loss rate
- A reduction in air loss rate, by a factor of 2, may be achievable for some tires

Air Permeability Test

Test Procedure:

- Place inflated tire in climate controlled room
 - + Inflated with air
 - + Maximum permitted inflation pressure
- No data taken for first month
- Measure percent air lost per month for next five months
- Industry standard procedure for doing this ASTM F1112-00 "Standard Test Method for Static Testing of Tubeless Pneumatic Tires for Rate of Loss of Inflation Pressure"

Air Permeability Test

Good Points:

- Well established, mature test procedure
- Easy to perform
- Inexpensive
 - Cost expected to be well below that of other proposed tests

Issues/Problems:

- Does not deal with mechanical aging
- Only permits one countermeasure to chemical aging

General Motors Accelerated Tire Endurance (ATE) Test

Test Procedure:

- Test tires on an actual vehicle
 - + Tires inflated with air
 - + Front tires 26 psi inflation pressure
 - T&RA rated load for 26 psi
 - + Rear tires minimum inflation pressure required to carry T&RA maximum rated load
 - + Different values used for LT tires
 - + Align suspension to minimize tire wear

General Motors Accelerated Tire Endurance (ATE) Test

Test Procedure:

- Drive vehicle 45,000 miles on public roads in Texas and Mexico
 - + Speeds range from 70 to 25 mph
 - + Paved and gravel surfaces
- Test takes approximately 11 weeks to perform

General Motors Accelerated Tire Endurance (ATE) Test

Good Points:

- Appears to do good job of mechanically aging tire
- Tests tire on a "real" road surface (flat road surface vs. a roadwheel with curved steel surface)
- Well established, mature, test run by major vehicle manufacturer and multiple tire manufacturers for many years
- GM vehicles have not had tire tread separation problems while using this test

General Motors Accelerated Tire Endurance (ATE) Test

- Issues/Problems:
 - ATE does not do good job of chemically aging tire
 - + Experimental data show essentially no oxygen permeation into rubber around end of Belt #2 during test
 - Poor repeatability
 - + Run outdoors on public roads
 - High cost
 - + Typically, all four tires on vehicle are identical
 - Different front/rear loadings
 - + Estimated \$50,000 cost to perform by NHTSA

Michelin Long Term Durability Endurance (LTDE) Test

- Test Procedure (Michelin submission, not NPRM version):
 - Test performed on 67-inch roadwheel
 - P-metric standard load tires tested at 111% of maximum T&RA load, 40 psi pressure
 - + Different load/pressure combinations used for Extra Load and LT tires
 - Inflation mixture of 50% oxygen, 50% nitrogen used

• Test Procedure:

- Ambient temperature of 38° C (100° F)
- 60 mph speed
- Michelin believes that 100 hours of LTDE testing simulates one year of actual tire service

Good Points:

- Well established, mature, test run by a major tire manufacturer for many years
- Test intended to predict and exceed tire performance requirements of General Motors ATE test
- Pattern of tire failures in LTDE test matches pattern of field failures
 - + Lots of belt edge cracking, bead failures
 - + Infrequent chunking, sidewall failures

Good Points:

- Test generates temperature distribution throughout tire that simulates normal operation
 - + Conversely, oven aging heats tire uniformly
 - + Actual tire has hot spots near edges of Belt #2 and at bead when vehicle is being driven
 - + LTDE test mimics these hot spots
- Cost well below that of General Motors ATE

Issues/Problems:

- Not presented with data as to how test ages rubber around end of Belt #2
 - + Concerned as to whether test long enough to obtain adequate oxygen permeation into end of Belt #2 rubber
 - GM ATE test takes five times longer than three years of aging with LTDE test and still doesn't have adequate oxygen permeation
- No correction for effects of tire size due to testing on road wheel
- Test does not accurately simulate aging of tires on stationary vehicle

- Test Procedure (from draft FMVSS 139 final rule)
 - Condition tire for 24 hours on 67-inch roadwheel
 - + 75 mph
 - + 40°C ambient temperature
 - + 26 psi air inflation
 - + 90%/100%/110% of maximum load rating labeled on tire with 8 hours at each load step
 - After conditioning, a test specimen is cut out of the tire
 - The force required to separate adjacent belts is measured using the ASTM D413-98 test procedure

Good Points:

- Peel force test is established, mature, test procedure
- Peel force testing is quick, straightforward test to perform
- Peel force test has been around for many years
- Experimental data show that peel force decreases as a tire ages

Issues/Problems:

- Conditioning procedure is not well established or mature
 - + Parameters recently developed by NHTSA
- Not expected to substantially chemically age tire
 - + 24 hours with air at lower than maximum pressure just isn't long enough

Issues/Problems:

- Peel force alone is insufficient to characterize tire durability
 - + High initial peel force = lower resistance to crack initiation, better resistance to crack propagation
 - + Low initial peel force = higher resistance to crack initiation, lower resistance to crack propagation
 - + Which is better?
- Some brands have a much higher peel strength for any age of tire than other brands. Yet both brands of tires have acceptable performance in field

- Issues/Problems:
 - Peel force test data are noisy
 - + Typical plot contains many peaks, valleys
 - + Industry is not sure how to interpret
 - Use maximum?, average?, ...

Oven/Mechanical Aging Endurance Test

Test Procedure:

- Heat tires aging in oven interspersed with mechanical stressing on 67-inch roadwheel
- Inflation mixture of 50% oxygen, 50% nitrogen used
- Oven temperature of 70° C (158° F)
 - + Industry has presented data that higher temperatures may cause rubber reversion problems
 - + Two ASTM procedures use this temperature
- Time in oven needs to be determined
- Roadwheel testing parameters need to be determined

Effect of Temperature

- Rate of chemical aging due to oxidation increases with temperature
 - + However, cannot increase temperature above 70° C without having thermal reversion problems
- In their comments to the FMVSS 139 NPRM, RMA stated that rate of chemical aging due to oxidation doubles for each 10° C increase in temperature
 - + At 70° C, a tire chemically ages 32 times faster than at 20° C

- Effect of Temperature (continued)
 - Industry experts have told us that doubling for each 10°
 C rule only works for thin sheets of rubber
 - + For an actual tire, situation is more complicated.
 Oxygen diffusion is limited by:
 - Physical boundaries diffusion rates changed by different layers of tire (cords, skim stock, belts, etc.)
 - Temperature at higher temperatures, outer layers consume oxygen before can reach inner components
 - Oxide layers which harden rubber from outside in and impede oxygen diffusion (slow down aging)
 - + They recommended use of finite element models with limited diffusion to obtain a more accurate calculation

Effect of Oxygen Partial Pressure

- Rate of chemical aging due to oxidation increases with difference in partial pressures of oxygen between inside and outside of tire
 - + Can fill tire with 50% oxygen, 50% nitrogen inflation mixture to accelerate chemical aging
 - + Cannot use more than 50% oxygen in inflation mix without causing safety problems
 - Over-inflating tire will also accelerate chemical aging but may cause non-realistic permanent stretching of tire

- Effect of Oxygen Partial Pressure (continued)
 - In their comments to FMVSS 139 NPRM, the RMA stated that rate of chemical aging increases by 50% if a 50/50 oxygen/nitrogen mixture is used
 - Based on limited diffusion finite element tire models, industry experts have estimated a 72 to 84 % increase in chemical aging of rubber around end of Belt #2

- Combining Inflation Mixture and Temperature Effects
 - Based on limited diffusion, finite element tire modeling combining these two effects, a tire at 70° C filled with a 50/50 oxygen/nitrogen mixture will chemically age a typical tire by one year in 35 days
 - + Acceleration factor is approximately 10
 - Substantially slower than rate given to NHTSA by RMA

Mechanical Aging

- Typical vehicle driven 12,000 to 15,000 miles per year
- This equates to approximately 10 million cycles (revolutions of the tire)
- Fatigue plots typically reach an asymptote for large numbers of cycles
 - Do not have to perform all 10 million cycles per year to adequately fatigue tire

Oven/Mechanical Aging Endurance Test

Good Points:

- Can select oven, roadwheel parameters to accurately simulate actual, in-service, chemical and mechanical aging seen by tires
- Costs of oven/mechanical aging well below that of onroad testing

Oven/Mechanical Aging Endurance Test

Issues/Problems:

- Procedure not well established or mature
 - + Parameters had to be developed by VRTC
 - + Parameter setting process discussed below
- No data as to how well procedure ages rubber around edge of Belt #2 either chemically or mechanically